Logika Penyerdahanaan
Penyederhanaan
Latihan Soal-Soal
Soal 1
Sederhanakan bentuk-bentuk logika ini menjadi bentuk paling sederhana :
1. A ^ (~ A => A)
2. ~ (~ A ^ (B v ~ B))
3. ~ A => ~ (A
=> ~ B)
4. (A => B) => ((A
=> ~ B) => ~ A)
5. (A => (B v ~ C))
^ ~ A ^ B
6. (~ A ^ ~ (B => C))
^ ~ (A => (B => ~ C))
7. (~ A => B) =>
((~ A => ~ B) => A)
8. (A ^ (~ A v B)) v B
v (A ^ (A v B))
9. (A ^ ~ B ^ A ^ ~ C)
v (C ^ A ^ ~ C)
Penyelesaian !!!
1. A ^ (~A => A)
A ^ (A v A) Hk.
Implikasi
A^ A Hk. Idempoten
2. ~ (~A ^ (B v ~B))
A ^ (~B v B) Hk.
Negasi Ganda
A ^ 1 tautologi
A Identity
of ^
3. ~ A => ~ (A
=> ~ B)
= ~ ~ A v ~(A => ~ B)
A => B = ~ A v B
= ~ ~ A v ~ ( ~ A v ~ B) A => B = ~ AvB
= ~ ~ A v (~ ~ A ^ ~ ~ B) De Morgans’s law
= A v (A ^ B) Law
of Double
= A Absortron
4. (A => B) => ((A
=> ~ B) => ~ A)
~ (A v ~ B) v ( ~ (A v ~ B) v ~ A)) 1A => B = ~ A v B
(~ A ^ B) v (~ A ^ B)
v ~ A)) Hk. De Morgan’s
(~ A ^ B) v (~ A v ( ~ A ^ B)) Hk. Negasi Ganda
(~ A ^ B) v (A v B) Hapus
Kurung
A v (~ A ^ B) v B Komutatif
(A v (~A ^ B)) v B Tambah
Kurung
A v B Absorptio
5. (A => (B v ~C))
^ ~ A ^ B
(~ A v (B v ~ C)) ^ ~ A ^ B A => B= ~A v B
~ A v (B v ~ C) ^ ~ A ^ B
~A ^
~ A ^ B Absorption
A
^ B
Komentar
Posting Komentar