Logika Informatika Ekuivalen
Tugas Logika INFORMATIKA
Buktikan bahwa ekspresi-ekspresi logika berikut ini ekuivalen dengan
menggunakan table kebenaran.
1) ~A <=> B = (~A V B) ^(~B
V A)
Jawab :
A
|
B
|
~A
|
~B
|
(~A ó B)
|
(~A V B)
|
(~B V A)
|
(~A V B) ^ (~B V A)
|
B
|
B
|
A
|
A
|
A
|
B
|
B
|
B
|
B
|
A
|
A
|
B
|
B
|
A
|
B
|
A
|
A
|
B
|
B
|
A
|
B
|
B
|
A
|
A
|
A
|
A
|
B
|
B
|
A
|
B
|
B
|
B
|
2) A => (~A =>
B) = l
Jawab :
A
|
B
|
~A
|
(~A => B)
|
A => (~A = B)
|
T
|
T
|
T
|
F
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
T
|
T
|
T
|
F
|
F
|
T
|
T
|
T
|
F
|
3) (A V ~B) => C =
(~A ^ B) V C
Jawab :
A
|
B
|
C
|
~A
|
~B
|
(A V ~B)
|
(B V ~B) => C
|
(~A ^B)
|
(~A ^ B) V C
|
T
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
F
|
F
|
T
|
F
|
T
|
F
|
T
|
T
|
T
|
F
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
F
|
F
|
4) A => (B =>
C) = (A => B) => C
Jawab :
A
|
B
|
C
|
(B=> C)
|
A => (B =>C)
|
(A => B)
|
(A => B) => C
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
T
|
F
|
T
|
T
|
T
|
F
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
T
|
5) A => B = ~ (A ^
~B)
Jawab :
#UMMI
#LOGIKAINFORMATIKA
#HMIFUMMI
#UNIVERSITASUNGGUL
#SUKABUMI
Komentar
Posting Komentar